**SEMESTER** 

VI

**QP CODE** 

6202



# P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS APRIL -2025

III B.SC:MATHEMATICS: SPECIAL FUNCTIONS

TIME: 2 HRS

| C       |              |     |       |       |           |
|---------|--------------|-----|-------|-------|-----------|
| DATE&SE | 03:04.2025 & | DEC | <br>· | ·     | ·         |
|         | 03.04.2023 & | REG |       | MAX   | . i 1,125 |
| SSION   | AN           | NO  |       | i     | 50        |
|         |              | 110 |       | MARKS | S AM      |

#### SECTION-I1

Answer any THREE of the following questions. And attempt one question from Each section part Each question carries TEN marks

3X10=30Marks

### PART-A

- 1. Derive the relationship between Gamma and Beta function?
- 2. Prove that  $\Gamma\left(n+\frac{1}{2}\right) = \frac{1.3.5...(2n-1)\sqrt{\pi}}{2^n}$ , when n is a + ve integer
- 3. Find the general solution of y'' + (x-3)y' + y = 0 near x = 2

## PART-B

- 1. State and Prove Rodrigues formula for  $H_n(x)$
- 2. Prove that  $\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}$
- 3. Prove that  $\sqrt{\frac{\pi x}{2}} J_{\frac{3}{2}}(x) = \frac{1}{x} \sin x \cos x$

#### SECTION-II

Answer any FOUR of the following questions. Each question carries FIVE marks
4 X 5=20Marks

- 4. Show that  $\Gamma\left(\frac{1}{2} + x\right) \Gamma\left(\frac{1}{2} x\right) = \frac{\pi}{\cos \pi x}$
- 5. Evaluate  $\int_0^1 \frac{dx}{\sqrt{-\log x}}$
- 6. Find the radius of the convergence of the series  $\sum (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
- 7. Solve by power series method y' y = 0
- 8. Evaluate  $\int_{-\infty}^{\infty} x e^{-x^2} H_n(x) H_m(x) dx$
- 9. Prove that  $P_3(x) = \frac{1}{2}(5x^3 3x)$
- 10. Show that  $J_{-\frac{1}{2}}(x) = \sqrt{\frac{\pi x}{2}} \cos x$